
(1)根据万有引力定律,在月球上的物体:$G\frac {Mm} {{R}^{2}}=m{g}_{m}$
卫星绕月球做圆周运动,设速度为v,则:$G\frac {Mm} {{(R+h)}^{2}}=m\frac {{v}^{2}} {R+h}$
联立解得:$v=\sqrt {\frac {{g}_{m}{R}^{2}} {R+h}}$
(2)设卫星运动周期为T,则:$G\frac {Mm} {{(R+h)}^{2}}=m{(\frac {2\pi } {T})}^{2}(R+h)$,解得:$T=2\pi \sqrt {\frac {{(R+h)}^{3}} {{g}_{m}{R}^{2}}}$
则卫星每天绕月球运转的圈数:$\frac {{T}_{0}} {T}=\frac {{T}_{0}} {2\pi }\sqrt {\frac {{g}_{m}{R}^{2}} {{(R+h)}^{3}}}$
故答案为:(1)$\sqrt {\frac {{g}_{m}{R}^{2}} {R+h}}$;(2)$\frac {{T}_{0}} {2\pi }\sqrt {\frac {{g}_{m}{R}^{2}} {{(R+h)}^{3}}}$.
