
∵AE∥BC,
∴∠B+∠BAE=180°,
∵两三角板是一副直角三角板,
∴∠B=60°,∠BAC=90°,∠EAD=45°,
∴∠BAE=120°,
∴∠EAF=BAE-∠BAC=120°-90°=30°,
∵∠AFD是△AEF的外角,
∴∠EAF=∠E+∠EAF=45°+30°=75°.
故选C.

∵AE∥BC,
∴∠B+∠BAE=180°,
∵两三角板是一副直角三角板,
∴∠B=60°,∠BAC=90°,∠EAD=45°,
∴∠BAE=120°,
∴∠EAF=BAE-∠BAC=120°-90°=30°,
∵∠AFD是△AEF的外角,
∴∠EAF=∠E+∠EAF=45°+30°=75°.
故选C.