
(1)设$l_{1}$的函数关系式为$y_{1}=k_{1}x+b_{1}$,
由图象知,$l_{1}$过点$\left(0,2\right)$、$\left(500,17\right)$,
可得方程组$\left\{\begin{array}{l}b_{1}=2\\500k_{1}+b_{1}=17\end{array}\right.$,解得$\left\{\begin{array}{l}k_{1}=\dfrac{3}{100}\\b_{1}=2\end{array}\right.$,
故$l_{1}$的函数关系式为$y_{1}=\dfrac{3}{100}x+2$;
设$l_{2}$的函数关系式为$y_{2}=k_{2}x+b_{2}$,
由图象知,$l_{2}$过点$\left(0,20\right)$、$\left(500,26\right)$,
可得方程组$\left\{\begin{array}{l}b_{2}=20\\500k_{2}+b_{2}=26\end{array}\right.$,解得$\left\{\begin{array}{l}b_{2}=20\\k_{2}=\dfrac{3}{250}\end{array}\right.$,
故$l_{2}$的函数关系式为$y_{2}=\dfrac{3}{250}x+20$;
(2)由题意得,$\dfrac{3}{100}x+2=\dfrac{3}{250}x+20$,
解得$x=1000$,
故当照明时间为$1000$小时时,两种灯的费用相同;
(3)①假如先用白炽灯,再用节能灯,则应有:
当$x=2000$时,$y_{1}=\dfrac{3}{100}\times 2000+2=62$,
当$x=500$时,$y_{2}=\dfrac{3}{250}\times 500+20=26$,
故费用为$88$元;
②假如先用节能灯,再用白炽灯,则应有:
当$x=2000$时,$y_{2}=\dfrac{3}{250}\times 2000+20=44$,
当$x=500$时,$y_{1}=\dfrac{3}{100}\times 500+2=17$,
故费用为$61$元;
因此,两种方案中,先用节能灯,再用白炽灯省钱,可节省$27$元.
